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NOTATION 

A, B, C, = principal  moments of inertia 

a, b,  c,  d, = numerical  coefficients, Eq. (64) 

a = correct ional   factor ,  Eq. (27) 

cD 

cL 

'm 

= drag  coefficient 

= lift  coefficient 

= pitching  moment  coefficient 

'D,' 'L,' cm,* 'rnh 
= stability  derivatives 

9 

cN 1 
= coefficient,  Eq. (48) 

= coefficient, Eq. (54) 

g = acceleration  due  to  gravity 

hl 

kY 

= correctional  coefficient, Eq. (41) 

= radius of gyration in pitch 

K = coupling  coefficient, Eq. (54) 

L = mean  chord,  characterist ic  length 

m = m a s s  of vehicle 

n = angle-of-attack  frequency 

9 = angular  velocity in pitch  relative  to  the  earth 

A 
9 

- L  
2UO 
" 9 

r = radial   distance  from  center of ear th  

r 
A r 

r0 

- uo 

- 
" 

S G 
, speed  ratio 

S = re ference   a rea  

t = t i m e  

t? = a t  
UO 

A u - v  
" 

UO 

T = thrust ,   period 

UO = reference  c i rcular   speed 

V 



w 
V 
X 

X 

(Y 

P 

Y 
6 

0 

X 

P 

9 
w 

= vehicle  weight 

= speed  along  the  orbit 

= vector   s ta te ,  Eq. (13) 

= COS 7 

= angle-of-attack 

= density  coefficient Eq. ( 11) 

= flight  path  angle 

= ($y 
= small   perturbation,  eccentricity of orbit  
- 2 r o  

L 
" 

= angle of pitch 

= characterist ic  value 

= density  coefficient  Eq. (24) 

= a i r   mass   dens i ty  

= non-dimensional  density  gradients  Eq. (10) 

= = t 

= central   range  angle   (Fig.  l), function,  Eq. (66) 

= phugoid  frequency 

UO 

= reference  flight  path 

= perturbed  quantity 

vi 



ABSTRACT 

This  paper  presents an analytical  study of the  longitudinal  dynam- 

i c s  of a  thrusting,  lifting , orbital  vehicle  in  a  nearly  circular  orbit.  

The  translational  motion is composed of a  non-linear  oscillation, or 

phugoid,  and  a spiral   mode  which  results  in  ei ther  decay or dilatation of 

the  orbit  depending on the  perturbed  initial  conditions.  The  non-linear 

effects  on  the  phugoid  period  and  damping  are  small in the  altitude  range 

considered.  Elements of the  orbit   such as radial  distance,  velocity, 

and  flight  path  angle  were  obtained  explicitly  as  functions of time.  The 

behavior of the  variations of these  elements is correctly  predicted.  

Explicit  expressions  for  period  and  damping of the  angle-of-attack  mode 

were  derived.  It is shown  that  a  critical  altitude  may  exist  at  which  the 

phugoid  mode  and  the  angle-of-  attack  mode  have  nearly  equal  periods. 

Near  this  resonance  altitude  linearized  solutions  are no longer  valid 

and  a  study of the  non-linear  equations  shows  that  there is a  strong  in- 

teraction  between  the  translational  and  the  rotational  modes  resulting in 

a  switching of the  two  frequencies of oscillations. 

vii 



In R.ef. 1, Etkin  has  presented a very  enlightening  study of the  small-per tur-  

bation  dynamics of a satell i te  vehicle in a nearly  circular  orbit .   He  l inear- 

ized  the  equations of motion  and  solved  the  resulting  fifth-order  system 

numerically.   I t   was found that  the  l inear  solutions  contain  two  oscil lating 

components  which  can be identified  with  the  classical  phugoid  and  short-period 

modes  and a new  spiral  mode.  Etkin  then  showed  by  direct  numerical  calcu- 

lations  that,  with  hypersonic  speeds at a flight  altitude  where  the  gravity 

torque  predominates  over  the  aerodynamic  torque,  the  so-called  short-period 

oscillations  can  develop a period  that  is  longer  than  that of the  corresponding 

phugoid.  At  the  critical  resonance  altitude  where  the  two  periods  are  nearly 

equal ,   Etkinfs   l inear l ized  solut ions  are   no  longer   val id   because  the  ampli-  

tudes of the  oscillations a re  la rge .  

More  recent ly ,   E.  V. Laitone  and Y .  S. Chou  made a theoret ical   analysis  of 

the same problem.  Their  analytical   solution of the  l inear   equat ions  are  in 

excellent  agreement  with  Etkinf s numerical  calculations.  

In this  paper,  we extend  Laitone  and  Choufs  investigation  to  include  non- 

l inear  effects in the  longitudinal  dynamics of the  orbit ing  vehicle.   The equa-  

t ions of motion of a thrusting,  lifting  vehicle in a near ly-c i rcu lar   o rb i t   a re  

integrated  directly in matr ix   form,   using a perturbation  technique.  It  will  be 

shown  that,  for  the  phugoid, or t ra jectory  mode,   Etkinfs  new sp i ra l   mode  is 

the  famil iar   secular   per turbat ion of a vehicle  flying in a res i s t ing   medium.  

The  proper  phugoid  motion,  with  damping,  is  described  by  oscillatory terms 

with  diminishing  amplitudes.  Through  explicit  formulas,  the  asymptotic  be- 

haviors of the  variations of the  elements of the  orbit  are correct ly   predicted.  

Fur thermore ,  a very  s imple  formula  yields  a value  for  the  alt i tude  where 

variations in velocity  change  sign.  This  value  for  the  velocity  inversion  alti- 

tude  is   accurate  to within 10 feet of the  numerically  computed  value.   For  the 

short-per iod  mode,   which  we  shal l   refer   to  as the  angle-of-attack  mode,  ex- 

plicit   formulas are derived  which  yield  accurate  values of the  period  and 

damping at all alt i tudes.   The  resonance  alt i tude  where  the  two  oscil latory 



modes  have  equal  periods  is  obtained  by  solving a very  simple  equation. 

This  value  for  critical  altitude  is  also  accurate  to  within 10 feet of the  exact 

numerical  solution. 

THE EQUATIONS O F  MOTION 

0 

- .. - \  - \  \PLl 

X 

GHT PATH 

EARTH'S  CENTER 

Fig. 1 Axes  System  and  Nomenclature 

If we use  an  axes   system  that  is always  tangent  to  the  flight  path  as  shown in 

Fig. 1, the  motion of a lifting  vehicle  with  constant  thrust is governed  by  the 

system of equations': 

T psc vz 
D 

dt m 2m 

V- - - s l n ~  + -~ - (g - ;:) cosy  

" d V -  - coscy  - _" 

p sc Lv' 

- g s i n y  

d y - T  . 
dt m 2m 

de  - q + - cos y V 
dt r 
- -  

d r  
dt 
- = V s i n y  

::All symbols a r e  defined in notation  section, 
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The  f i rs t   two  equat ions  are ,   respect ively,   the   drag  and  l i f t   equat ions  a long 

the  tangent  and  normal  to  the  flight  path.  The  constant  thrust,  T,  is  set  for 

a re ference   c i rcu lar   o rb i t  of radius  ro with  constant  lift  and  drag  coefficients. 

Furthermore,   the   thrust   i s   smal l   enough  that   the   mass  of the  vehicle  can  be 

assumed  constant.   Hence,  along  the  reference  orbit ,   where y = a = 0 

The  f i r s t   t e rm on  the  right-hand-side of the  pitching  moment  equation,  Eq. 

( 1 - 3 ) ,  expresses  the  restoring  aerodynamic  torque,  while  the  second  term 

corresponds  to   the  gravi ty   torque.   The  las t   three of Eqs .  (1) a re   k inemat ic  

relationships.   The mass density, p, of the  atmosphere is solely  altitude 

dependent. For computational  purposes  the  atmospheric  data  used  were  ob- 

tained  from a polynomial  representation of the 1962 U . S .  standard  atmos- 

phere as presented in the 1966 U . S .  standard  atmosphere  supplements.   The 

lift  and  drag  coefficients, C (a) and C (a), are   funct ions of the  angle-of- 

attack  only,  while  the  pitching  moment  coefficient C (a, q)  depends on both 

the  angle-of-attack  and  the  angular  velocity in pitch  relative  to  the  earth. 

L D 

m 

To write  the  equations in non-dimensional  forms,  let 

Furthermore,   to   the  f i rs t   order  

C,(a) = c + c a 
Lo L, 
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where C , C and C are the  drag,  lift  and  pitching  moment  coefficients 

along  the  reference  f l ight  path.  
Do Lo m0 

With  the  definitions 

the  non-dimensional  equations of motion  can be writ ten as 

A 2A r = s u s i n y  

e = y + ( Y  

We s e e  now that,   for  prescribed  init ial   conditions,   integrating  the  system 

of Eqs. (6)  is a formidable   task.   The  task  is   eased,   however ,  by  decoupling 

the  equations.  To  this  end, we shal l   assume  that   the   motion of the  vehicle 

around  i ts   center of mass  has  negligible  effect  on the  orbit,  that is, on the 

t ra jectory  mode.   This   assumption  is   jus t i f ied  s ince  the  vehicle  is smal l  in 

comparison  with  the  dimension of the  orbit   and  since  the  aerodynamic  forces 

in the  alt i tude  range  considered are  a l so   smal l .   This   s ta tement  of the so- 

called  l imited  problem  has  been  used in celestial   mechanics  to  study  the 
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l ibration of the  moon.  Based  on  this  decoupling,  we  shall  first  calculate  the 

trajectory  mode,  and  then  use  the  results  to  integrate  the  equations  govern- 

ing  the  angle-of-attack  oscillations.  The  coupling  effects  will  be  examined 

in the  las t   par t  of the  paper .  

PHUGOID  OSCILLATIONS 

The  phugoid, or  long  period  oscil lations,   occur at nearly  constant  angle-of- 

attack.  Hence,  by  taking CY ~ 0 ,  we  have  the  non-dimensional  equations 

which  govern  the  phugoid  mode. 

A u = pCDa(l - pu ) - - s i n  y h A 2  1 

$2 

A r = s u s i n y  2A 

We note  that s is the  ra t io  of the  circular  velocity  to  the  orbital   circular  velo- 

city  without  drag.  Pt  very  high  altitude s - 1 and p + 0 and  the  first  and  the 

third of Eqs .  (7)  reduce  to 

; = -  1 -sin y 
r2  
A 

A A  r = u s i n y  

From these,  we have  the  energy  integral 

A 1 
L U 2  - - = 
2 P constant 

In  general,  the  force  field  is not conservative  since  the  energy  is   dissipated 

by atmospheric   drag.  

If we allow  only  small  departures  from  the  equilibrium  flight  path, we can 

express   the  orbi ta l   parameters  in t e r m s  of small   per turbat ions 

5 



Also,  by  expanding the mass   dens i ty  p( r )  in a Taylor ' s   se r ies  in rl , we have A h  A 

where 

Further ,   le t  

w z  = ( 1  - s2)(-cr1s2 + 2) + s4 

p = -$s2[(  1 - s 2 ) ( u 2  - 1) - 21 

d 
d-r 

T = W @ ,  - (  ) = (  ) '  

To the  second  order of smallness  in the  perturbations,  we  can  rewrite  the 

system of Eqs. (7)  in matr ix   form 

where 
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Let  E be  an  init ial   perturbation of any  one of the   var iab les ,   say  rl . We can 

then assume ser ies   solut ions of the  form 

A 

A u1 = E U l l  A + E2U1, h +. * a 

A A rl = €rll  

o r  

x = EXl + €,X, + * * - (15) 
# 

where  the  definitions of the  column  vectors  X1, X,, . . . are clear from  Eq. 

(14 ) .  By  substituting  into Eq. (12) and  equating  coefficients of like  powers 

in E we have  the  system of differential  equations 

X\ = AXI (16)  

X', = AX2 + B(Xl)  (17) 

Since A is a constant   matr ix  we can  immediately  integrate  Eq. (16) to  have 

where 

With  this  value of X1 ( T) we  can  express B(Xl)  as a function of T and  consider 

Eq. (17)  as a l inear   system of differential  equations  with a forcing  term.  

By integrating  we  have 
T 

But 

Hence 

0 
J 

x2 = Xz(0) = 0 0 

J 
0 

and  the  solution  to  the  second  order, of the  phugoid  mode,  is 

7 



Linear Solution 

The  integration of Eq. (1 6)  gives  the  l inear  solution.  The  system  has  the 

characterist ic  equation 

" 

where 

= s ~ [ - ( l + u 1 ) s 2  + 2 ]  = -uz - q s 2  + 2  ( 24) 

In  general ,   the  characterist ic  equation has a pa i r  of complex  conjugate  roots 

corresponding  to  the phugoid oscil lations  and a real root  corresponding  to 

the  spiral   mode.   The last t e r m  of the characteristic  equation  induces  the 

spiral   mode  and is a small quantity.  Let 

x sp i r a l  = W Do (::Ja 

where a is a quantity  to  be  determined. By substituting  into  Eq.  (23) we 

have 

Using  Lagrange's  expansion3  we  have for the  value of a 

Then by factorizing  the  cubic  equations, Eq. (23),  we  have  for  the  phugoid 

mode 

This  gives 

A' +- 2pcDo (1 + c j a ) A  + a = 0 
-1 

W 

('phugoid = - "(I+(:Ja) PCD w 

a 



1 

Irn ('phugoid 

With  the  roots  calculated  we  have for the   sp i ra l   mode  in real t ime 

F o r   t h e  phugoid  mode  the  damping is given by 

1.38m 
'half - poSCD0uO 

In r e a l  time, the  phugoid  period  is 

In  the  last  equation,  by  taking  the  bracket  equal  to  unity  we  have a result   that  

is  identical  to  Laitone  and  Chouf s Eq. (1. 5)' . At very  high  altitudes, w tends 

to  unity  and p tends  to  zero.  The  phugoid  period  asymptotically  tends  to  the 

circular  orbital   period.  In  reali ty,   after a perturbation  has  been  applied in 

a vacuum,  the  vehicle  will  go  into a slightly  elliptical  orbit.   Thus, T should 

tend  to  this  el l iptic  orbital   period.  This  correct  orbital   period  appears  only 

when  we  consider  non-linear  terms. 

In general,  the  quantity (&y(!J PCD0 in the  expansion of a, Eq. (27), is 

small and  setting a = 1 gives a very good approximation.  This  expansion 

gives  the  roots of the  characteristic  equation  explicitly  to  the  desired  de- 

g ree  of accuracy.  In our  derivation,  the  darnping  term for the  phugoid  is 

where a is  explicitly  given  by  the  series  expansion,  Eq. (27 ) .  Using a = 1 

we  have  Laitone  and  Chouf s Eq. ( 3 . 9 )  for  phugoid  damping.  Hence,  besides 

the  additional  spiral  mode  obtained,  the  above results greatly  improve  the 

already  accurate   formulas  for phugoid  oscillations  derived in Ref. 2.  
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With  the  roots  calculated,   we  have,  to  the  f irst   order,   for  the  elements of the 

flight  path 

A r = 1 + EC1eA2' + EeAITICZcosal-r + c 3 s i n w l  TI 

y = C l e A 2 T + E z e  [ ( 0 1 ~ 3  + X ~ C ~ ) C O S W ~ T - ( W I C ~  - ~ 1 ~ ~ ) S i n w l T l  E wA w A ~ T  
S 

A E 
U = 1 + [ ( w 2  - 2) + wZAi]C1  eXzT 2s  ( 3 5) 

where  the C .  are  constants of integration. 

From these  expressions  we  have  the  following  interesting  remarks: 

1.  In each of the  variations of elements  such  as  radial   distance,   f l ight  path 

angle,  and  velocity,  there are  two  components.  One  component  is  oscilla- 

tory  with  diminishing  amplitude  and it tends  to  circularize  the  f l ight  path.  

The  other  component is aperiodic  and  divergent.  This  component  is  due  to 

the  offset   effect   between  the  thrust   and  the  drag  and  induces a secular   var ia -  

tion of the  elements of the  orbi t .  

2 .  For   the  vehicle   considered in Ref .  1, w1 > 1 above  about 140, 000 ft,  and 

w1 -t 1 as ro -+ co, thus  the  effect of drag  is   to   shorten  the phugoid period. 

3 .  In the  expression  for  r, s ince  A 2  > 0,  the  divergent  mode  tends  to  de- 

crease  the  radial   d is tance if the  ini t ia l   per turbat ions  are   such  that  EC1 < 0 .  

On the  contrary if EC1 > 0 the  radial   distance  will   increase  with  t ime. 

Furthermore,   under  the  constant  thrust   application,  with  decreasing  drag, 

the  vehicle  will  move  outward  following a sp i r a l .  

4. From  the  expression  for  the  f l ight  path  angle we can  see  that   i t   var ies  in 

the  same  direct ion as the  radial   distance.  

1 

A 
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';, 
5. On the  contrary,   the  velocity  varies as the  radial   d is tance if and  only if 

W 2  > 2 
1 + A $  

If the  inequality  is  satisfied  the  velocity  will  increase as the  vehicle  is 

spiral ing  out   and  decrease if the  vehicle  is   spiraling in. The  inverse  is   t rue 

if the  inequality  reverses.  To calculate  the  altitude  where  the  velocity  in- 

vers ion  occurs ,   s ince A 2  is small ,   we  can  use  the  equation 2 

wz  = 2 (37) 

The   Eqs .  (35) are derived in terms of the  non-dimensional  time T, and  the 

frequency of oscil lations w1 is  given  by Eq. (29 ) .  In t e r m s  of the  non-dimen- 

sional  t ime,  t ,   the  frequency of oscillations is wlw which  can  be  approximated 

by w since w 1  is   near  unity.   The  square of the  l inear  phugoid  frequency, w , 

is plotted  versus  the  altitude in Fig.  2 .  

We see  that  w 2  is  large  at  low  altitudes  and  tends  asymptotically  to 1 when 

the  altitude  increases  indefinitely.  When w2 = 2 the  velocity  inversion  occurs. 

More  explicitly,  using  the  definition in Eqs.  (11) for  w', we  have 

A 

2 

where  subscr ipt ,  s, denotes  the  condition  at   sea  level  and pb is the  density 

gradient  evaluated  at ro . The  left-hand  side of the  formula  above is a char -  

ac te r i s t ic  of the  vehicle  and  the  right-hand  side is solely  dependent on the 

charac te r i s t ic  of the  a tmosphere.   Fig.  3 is a plot of Eq. (38) as a function 

of the  altitude  and  the  graph  can  be  used to. determine  the  alt i tude  where  the 

velocity  inversion  occurs  for  any  given  vehicle. For example,  the  vehicle 

considered in Ref.  1 has  (W/S)s /C = 600 lb/f t . '   Thus,   the   cr i t ical   a l t i -  

tude  for  velocity  inversion  is 3 21, 000 ft.  
LO 

Eq.  (38)  gives  the  critical  altitude  to  within 10 ft .  of the  value  computed 

numerically  from  the  exact  l inear  equations.  
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Non-Linear  Solution 

We  have  seen  that  the  next  higher  order  component of the  vector   s ta te   is  

€ 'X2.  If B(t) E B(XI),   then 

0 

and, A and B are given  by Eq. (13) and XI represents  the  l inear  solution 

found in the  preceding  section.  Hence  the  computation of X'(T) is   s t ra ight-  

forward.  Here  we  need  only  to  have  an  idea of the   o rder  of magnitude of the 

second   o rde r   t e rm.  By the  form of the  vector  B(XI),   we  can see that, if the 

perturbation  is   small ,   the  contribution of €'Xz  is  negligible.  This  has  been 

shown in a numerical   study by  Rangi.  But in the  expansion, Eq. ( 9 ) ,  of the 

mass   dens i ty  of the  a tmosphere,  I J ~  is of the  order  1 O 5  . Hence, if E >0(10-4)  

we  should  include  the  second  order  gradient  effect of the   a i r   mass   dens i ty  0-2 

which  appears  explicitly in B ( X I ) .  By the  same  considerat ion,   terms which 

need  to  be  retained in B a r e  

Hence,  the  non-linear  numerical  analysis of Ref. 4 is  not  valid  for  large  per- 

turbations,   since  the  author  has  neglected all second  and  higher  order  terms 

of the   a i r  mass density. For large  per turbat ions,   as   were  considered in 

Ref .  4, the  prime  contributing  non-linear  factor in the  phugoid  and  spiral 

t ra jectory is the  variation of the mass  density of the  a tmosphere.   The  per-  

turbed  t ra jector ies   for   these  cases   are   highly  eccentr ic   orbi ts   and it is  not 

cor rec t   to   assume a l inear   var ia t ion   for   the   a i r   mass   dens i ty .  (See A p p e n d k c )  

The  value of u2 considered  above  is   somewhat  too  large  because of an  inverse 

polynomial  representation of the  a tmospheric   mass   densi ty .   This   resul ted ' 

from a curve  fitting  analysis  which  can  give a wrong  value  for a truncated 



s e r i e s  at a certain  alt i tude.   In  trajectory  analysis a better  approximation  is  

usually found using  an  exponential  atmosphere.  However,  this  atmosphere is 

not  suitable  for a dynamics  stabil i ty  analysis  in  which a ser ies   expansion of 

the air mass   dens i ty  is required.  

In  this  paper,  we  just  want  to call attention  to  the  effect of the  second  order 

atmospheric  gradient.  For an  accurate  second  order  analysis,   the  coeffi-  

c ients  u1 and crz in the  "parabolic  representation" of p, Eq. 9, should  be 

averaged f o r  each  l imited  alt i tude  range  considered. 

Asymptotic  Behavior of Phugoid  Period 

To   t he   f i r s t   o rde r  we  have  seen  that  the  phugoid  period  tends  to  the  circular 

orbital   period when the  altitude of flight  increases  indefinitely. In reali ty,  

the phugoid  period  tends to the  perturbed  ell iptical   period.  To find t h i s   c o r -  

rect   orbi ta l   behavior  we use a new time  variable,  t, such  that 

A 

- 
t = ~ ( l  + hlE + hzE2 + . * 0 )  

- 1  

where   h l ,   hz   a re   cons tan ts   to   be   de te rmined .  By substituting  into Eq. (39) ,  

neglect ing  drag  terms,   and  requir ing a periodic  solution  for X z ,  we  can 

easily find  that 

-hl = 
( 2  - - - 2(1- S Z ) ( W Z  -2 )  + 4 S Z ( p -  - 2) 

( 41) sL w 4  

Hence,  to  the  f irst   order,  

i s  

T =  

an  asymptotic  expression  for  the  phugoid  period 

A N G L E  OF ATTACK  OSCILLATIONS 

The  angle-of-attack  mode is governed by the  system 

e = y f f f  

14 



The  elimination of 8 and q resu l t s  in a non-linear  equation in a 

d2a  + T c o s a  da + pSV dC (a) L.  
dt2  dt m V  dt 2m 2 r  B 
- +” 3g ( A  - cos 2y s in  2a 

3g (A -C)  
2 r  B m 2m D s i n  2y cos 2a +- - (CL(a)  cos a + C ( a )  s ina)  T PS + -  ~ 

+ gZ ( 2  s i n y   s i n a  + c o s y   c o s o )  s in  2a 
m V  ( 44) 

“_ 

Linear  Solution - 
A zero-order  solution  can  be  obtained  easily  by  considering  small  oscilla- 

t ions of the  angle-of-attack  along a circular   orbi t .   Assume 

a << 1, y = 0, * = 0, v = u o ,  r = ro dt (45)  

Then Eq. (44) reduces  to  the  linear  equation  with  the  non-dimensional  time, 

T, as  the  independent  variable 

(46) 

To  the   o rder  p., we have  for  the  angle-of-attack  mode 

where 

The  solution, Eq. (47) ,  is identical  to  Laitone  and  Choufs  result’  and  is in 

good agreement  with  the  results of the  numerical  study in Ref .  1. 

Explicitly, in real time,  the  angle-of-attack  period is 

. .  . ._. - ... .. .. 



T = 2rru6 [3ko - 2pqECm 
go s (Y 

and  the  damping  is  given by 

(49) 

Resonance  Altitude 

For practical   values of vehicle   parameters ,   there   is   an  a l t i tude  where  the 

two  frequencies,  w and  n,  can  be  equal.  This  altitude,  called  the  resonance 

alt i tude,   is  found  by solving  the  equation w = n, and  'for  simplicity,  setting 

s2  = 1. 

Explicitly,  we  have 

where  subscr ipt  s denotes  the  condition  at sea level.   The  left-hand  side of 

the  formula  above  is  a charac te r i s t ic  of the  vehicle  and  the  right-hand  side 

is  solely  dependent on the  character is t ic  of the  atmosphere.   Fig.  4 p r e -  

sents   the  var ia t ion  for   the  ear th 's   a tmosphere as a function of the  alt i tude 

and  the  graph  can  be u s e d  to   determine  the  resonance  a l t i tude f o r  any  given 

vehicle .   For   example,   for   the  vehicle   considered in  Ref. 1, the  character is t ic  

value on the  left-hand  side of Eq. (51) is 5.  2281 x 1O41b/ft3  and  the  resonance 

altitude is therefore  492, 300 ft .   The  value of the  resonance  alt i tude com - 

puted  from Eq. (51) is correct  to  within 10 ft  compared  with  the  exact  value 

f rom a numerical   analysis   using  Etkin 's   equat ions.  

16 
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Coupling  Effects 

We have  assumed  that  the  coupling  effects  between  the two oscillatory  modes 

are   negl igible .   This  is, in general,  true,  below  and  above  the  resonance 

altitude.  However,  near  the  resonance  altitude,  strong  coupling  effects  are 

evident  and  the  linear  solutions,  Eqs.  (29)  and  (47),  are  no  longer  valid. 

In his  study',  Etkin found that  the  Phugoid  period  increased  with  altitude, 

tending  asymptotically  to  the  orbital  period. He also found that,   for  his  ve- 

hicle,  the  period of the  angle-of-attack  mode  increased  with  altitude  and 

crossed  over  the  Phugoid  period  at  about 490, 000 ft,  tending  asymptotically 

to  infinity  at  about 505, 000 ft.  This  behavior is also  predicted by the  un- 

coupled  oscillatory  mode  frequencies,  Eqs.  (29)  and  (47),  and  agrees  with 

one's  physical  intuition.  However, a close  inspection of the  region  near  the 



resonance  altitude,  using  Etkinfs  linear  equations,  shows  that  this  descrip- 

tion of the  behavior of the  mode  periods  is  in error and reveals, instead, 

the  phenomenon  shown in Fig.  5. There  is ,  in  fact, a "switching" of the 

modes of oscil lation  at   the  resonance  alt i tude  instead of a "crossing"! 

The  uncoupled  darnping  constants in Eqs .  (29) and (47) show  that  they  will 

remain  negative  at  all altitudes.  However,  Fig. 6 shows  that   near   the  reso-  

nance  altitude  the  Phugoid  damping  constant  becomes  positive  while  the 

angle-of-attack  mode  damping  constant  remains  negative.   Above  the  reso- 

nance  altitude  the  "switched"  angle-of-attack  mode  damping  constant is 

positive  while  that of the  "switched"  Phugoid is negative,  

A factorization of the  f if th-order  characterist ic  equation, of the  linearized 

coupled  equation of motion,  that  takes  into  account  the  effects  described- 

above,  has  been  obtained by Dobrzelecki. '  He found that  for  the  damping 

constants 

where 

K =  2[sZ(1 + s Z )  + 3ko s Z  - 0'1 

W Z [ l  - (:I2] 
W 

and  the  coupling  coefficient K is  positive  below  and  negative  above  the  reso-- 

nance  altitude. 

Eqs .  (52)  and (53), together  with  the  equations  for w and  n,  correctly  and 

accurately  predict   the  values of the  damping  constants  and  frequencies of 

the  oscillatory  modes,  to  within a few  thousand  feet  below  and  above  the 
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resonance  a l t i tude.   Figs .  5 and 6 c lear ly   show  that   near   the  resonance  a l t i -  

tude  one  has  to  consider  the  non-linear  equations of motion  to   predict   cor-  

rec t ly   the   c ross ing  of the  per iods.  

Non-Linear  Angle-of-Attack  Frequency 

At  high  alt i tudes,   especially  near  the  resonance  alt i tude,   the  amplitude of 

oscillation of the  angle-of-at tack  may  be  large.   The  mode  is   governed by 

the  non-linear  Eq. (44). A simplification  may  be  made by observing  that   the 

aerodynamic  forces are  small   and,  thus,  we can  consider   the  orbi t  as an  ex- 

act   Keplerian  ell ipse  for  the  duration of one or severa l   revolu t ions .   Fur ther  

m o r e ,  by  considering a circular  orbit  and  neglecting  quantities of the  order  

p2 and  the  negligible  damping,  we  have  an  equation  with T as the  independent 

var iable .  

sins cos a - -2 c = 0 2ps2q6 at' + - 
W 2  W m 

This  non-linear  equation is similar  to  the  equation  derived by V.  V .  Beletskii  

(Ref .  6, p. 72) with  one  difference.  Here  we  have a constant  low  thrust 

while  Beletskii  explicitly  assumed a drag-free  orbi ta l   per iod  for   the  t ra jec-  

tory.  

For  a slender  vehicle  with a conical  surface of attack,  an  approximate  ex- 

pression  for  the  pitching  moment  coefficient is 

'm m = C s in  a COSCY 
- 

CY 

where cm M Cm can  be  evaluated  by  using  the  simple  Newtonian  impact 
CY CY 

theory  for  moderate  angle-of-attack.  Pccurate  values for can  be ob- 

tained  from  wind-tunnel  measurements.  With  this  assumption,  the  non- 

l inear  equation  for  the  angle-of-attack is 

m 
CY 

CY" + 7 s in@  cos  CY = 0 
Ti2  

W 

where 



Eq.  (57)  can  be  integrated  easily  using  the  theory of elliptic  integrals o r  the 

so-called  Lindstedt  method  for  obtaining  periodic  solutions  to  non-linear 

equations  (Ref.  7,  p. 141). The  period of oscil lation  for  large  angle-of- 

attack  obtained, in real time, is 

where cyo is   the  init ial   perturbed  angle of attack. We notice  that  resonance 

does  not  appear for c i rcu lar   o rb i t s .  

Eccentricity  Oscillations 

If the  orbit  is elliptical,  the  result  is  qualitatively  different  since  the  co- 

efficients of the  non-linear  equation are periodic  quantit ies.   The  most  sig- 

nificant  effect  is  the  forced  oscillations  due  to  the  non-vanishing  eccentricity 

of the  orbit .   This  effect   will   give  r ise  to a possible  resonance.  Let u s  con- 

s ide r  a slightly  perturbed  Keplerian  ellipse  about  the  reference  circular 

orbit,  then 

where E is   smal l .   To  the  order  E we  have 

Neglecting  both  damping  and  quantities of o rde r  p2, and  taking w = s = 1, we 

have 

CY” + [ (3ko-  Z P q 6 C 7 ,  ) -E(3k0-  2(u1 - 2)pq6cm  )cos   ~Is incr  coscy 
CY CY 

+ 3€ ko  sin^ cos  2cu + pC COS CY 
DO 

= pCDo(l-Eu1cos-r) - Esin-r - 
PCL0 ulE sin 
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To display  the  effect of eccentricity  oscillations,  let  us  consider  the  case of 

small   angle-of-attack.  This  gives  us a Mathieu  equation  with  forcing  terms 

a'' + (a,' - Eh cos T)CY = -E(c s i n 7  + d cos  T )  ( 63) 

where 

The  homogeneous  Mathieu  equations  have a periodic  solution  which  can  be ob- 

tained  with  classical  methods.  Here we seek  a particular  solution  for  the 

non-homogeneous  Eq.  (63)  with  each of the  two  forcing  functions. For ex- 

ample,   consider 

cy" +(aZ  -Eb COS T)Q = -Ec sin T ( 65) 

and  assume a particular  solution of the  form 

CY = - EC s i n  T# T) e 

By substituting  into Eq. (65) we have  an  equation for 4 

where 

x = cos 1 

A particular  solution of Eq. (67)  is   sought  as a s e r i e s  in t e r m s  of the  small  

parameter  E .  Let 

+(x) = 4 0  + €41 + EZ+2 + - . . (69) 

Then by substituting  into Eq. (67)  and  equating t e r m s  of the   same  order  of 

magnitude we have 
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. . . .  
where  the  prime  here  denotes  differentiation  with  respect  to x = cos T. The 

system  can  be  readily  integrated  to  give 

It   is   clear  that  we can  do  the  same  with  the  forcing  term  -Ed  COST,  and  we 

have a particular  solution for the  non-homogeneous  Eq. (63).  By  neglecting 

EZd we  have  for a particular  solution of Eq. (63) 

= -  E [c  sin-r + d cos T] - - EZbc  s in  2~ 
e ( aZ  -1)  2(aZ - l ) (az  - 4) 

In the  last   expression we can   see   tha t  a' = 1 corresponds  to  a resonance. 

Our  results  consti tute  an  extension of Beletskii 's  study of small   eccentr ic  

oscillations of a satell i te  under  pure  gravity  torque  (Ref.  6, p.  41).  The 

general  solution of Eq. ( 6 3 )  is then  the sum of the  general  solution of the 

Mathieu  equation  and  the  particular  integral, Eq. ( 7 2 ) .  

CONCLUSION 

In this   paper  we  have  presented  an  analytical  study of the  longitudinal  dyna- 

m i c s  of a thrusting,  lifting,  orbital  vehicle in a near ly   c i rcu lar   o rb i t .   Ex-  

pl ic i t   expressions  for   the  e lements  of the  orbit  were  derived  and  the  behaviors 

of the  variations of these  elements  were  correctly  predicted.   I t   was  shown 

that  for  large  perturbations  the  second  order  gradient  effect  of t he   a i r   mass  

density  must  be  included.  Explicit  expressions  for  the  period  and  damping 

of the  angle-of-attack  mode  were  derived. It was  shown  that a resonance 

effect  was  not  present  for a c i rcu lar   o rb i t .  A resonance  effect was  displayed 

by a study of the  forced  eccentricity  oscil lations  and  the  cri t ical   al t i tude  for 

resonance  was  obtained  by  solving a very  simple  equation.  The  analytical   ex- 

press ions  a re  in excellent  agreement  with  an  independent  numerical  analysis 

a t  all alt i tudes.  
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APPENDIX A 

Charac te r i s t ics  of the  Atmosphere 

All   numericaJ  computations  are  based on  the U. S. Standard 

Atmosphere,  1962::. However,  for  ease of computation  the  approximate 

inverse  polynomial  representation of this   a tmosphere  that   appears  in the 

U.S. Standard  Atmosphere  Supplements, 19667, is assumed  to   be  exact .  

The  inverse  polynomial  is of the  form 

where Z is   the  geometric  al t i tude  above  the  standard  geoid  (6378. 17 lam 

radius) in kilometers.  The  coefficients  A,  are  given in Table  A-1. 
J 

The  polynomial  approximation  is  valid  for  the  altitude  range 0-200 

k m .  Compared  to  the  Standard  Atmosphere.   the  approximation  differs by 

less   than 5% (see  Fig.   A-1) in this  altitude  range. 

Error % $. 

Fig .  A - 1  E r r o r  in Representing "62" 
Standard  Atmos. By Poly- 
nomial  Representation. ? 

The  non-dimensional  density  gradients  defined in Eq.  (10) of the 

text are plotted in Fig.   A-2.   For   comparison  the  f i rs t   densi ty   gradient  

::U. S. Standard  Atmosphere, 1962, prepared  under  sponsorship of ESSA, 
NASA, and  USAF. 

tu .  S. Standard  Atmosphere  Supplements, 1966, prepared  under  sponsor- 
ship of  NASA, USAF  and  U.S.  Weather  Bureau. 

Both  publications are  available  from  the  Superintendent of Documents, 
U. S. Government  Printing  Office,  Washington, D. C.  20402. 

TIbid., - p.  68.  



( r l )  obtained  by  numerical  differentiation of the  tabulated  Standard 

Atmosphere  data is included in the  f igure.  

Table A -  1 

COEFFICIENTS FOR DENSITY POLYNOMIAL 

Altitude  range  0-200 km 

ps 
= 1.2250  Kilograms/m3 A [=]JanJ 

j 

A .  
7 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

0.1000000000 
0.339349 5800 

-0.3433553057 
0 .  5497466428 

-0.3228358326 
0.1106617734 

-0.229 17 55793 
0.2902146443 

-0.2230070938 
0 ,  1010575266 

-0.2482089627 
0.25487697  15 

E 01 
E-01 
E-02 
E-03 
E-04 
E-05 
E-07 
E-09 
E-11 
E- 13 
E- 16 
E- 19 
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APPENDIX B 

Character is t ic  of the  Vehicle 

The charac te r i s t ics  of the  vehicle  geometry  and  the  aerodynamic 

stabil i ty  derivatives  used in all numerical   calculations are those  used  by 

Etkin'  and  Rangi4  and are typical   for  a s lender  body, a cone or wedge of 

3" semiangle.   The  values  were  derived from the  simple  Newtonian im- 

pact   theory  for   moderate   angles  of attack.  They are tabulated  below. 

Table B-1 

GEOMETRIC  VEHICLE  PARAMETERS 

k = 6f t .  L = 50ft .  
Y 
ko = - 0 . 9 4  W / S  = 30 psf .  (sea level) 

cLo 
= 0 . 0 5  

Table B-2 

AERODYNAMIC STABILITY  DERIVATIVES 

C = 0.0133 c =  
DO L = - 0 . 0 2 8  

K L  acD - CL = - = 0 . 3 2 9  C,, " - = 0 . 1 5  a@ a@ cm 
" = -0.0548 

CY 
acr 

cy CY 
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A P P E N  DIX C 

Effects of Second  Order  Atmospheric  Mass  Density  Gradient 

In  pages 13 and 14 we  have  discussed  the  need  for  inclusion of the 

second  order   a tmospheric  mass density  gradient  (terms  containing u2) 

for  an  accurate  analysis.   This  effect   can  be  dramatically  i l lustrated by 

a numerical   analysis .  

Figures  C-1  and C-2 respect ively  represent   the  var ia t ions of the 

radial  distance  and  the  flight  path  angle as the   t ime  var ies .   They   a re  

reproductions of computer  generated  plots  with  different  atmospheric 

mass densi ty   laws.   The  set   i s   generated at an  alt i tude of 300, 000 ft, 

where  the  densi ty   gradients   are   the  largets ,   wi th   an  ini t ia l   non-dimen- 

sional  speed  decrease of = A$ = This   corresponds  to  a 

perturbation of 25ft/sec.  The  equations  used  are  the  uncoupled  phugoid 

equations  (Eqs. 7 ,  p. 5) .  The  sol id   l ines   represent   the  t ime  his tor ies  of 

the  elements of the  orbit  obtained  by a numerical   integration of the  un- 

coupled  non-linear  equations,  Eqs. 7 .  One  curve is generated  with  the 

exact  density  law,  that  is  the  44th  degree  inverse  polynomial  representa- 

tion of the 62 Standard  Atmosphere.  Another  curve  is  obtained by keep- 

ing  only  the  second  order  gradient  term.  The  dotted  line  represents  the 

l inear  analytical   solutions of the  uncoupled  motion (Eq. 18) with  the  value 

for  a to   the   o rder  pa . For comparison  the  numerical   solutions  using 

Etkin's  linearized  and  coupled  equations  are  also  plotted. It is c l ea r   f rom 

the  graphs  that ou r  l inear  analytical   solutions  and  Etkinfs  l inear  numerical  

solutions  are  nearly  identical .  But  they  do  not  compare  well  after 1 / 4  of 

a revolution  with  the  exact  solution  using  the  exact  atmospheric mass 

density law. The  result   can  be  improved by including  higher  order  den- 

sity  gradients.  This  is  obtained  by  using  our  second  order  solution 

(Eq. 22) .  The  discrepancies   are   much less at higher  altitude  where 

atmospheric   drag  is  small and  at   lower  alt i tude  where  the  period  is   short  

and  practical   perturbations are small. The  t ime  scale   taken for the  plots 
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is about 2 l inear   per iods.   Referr ing  to   Fig.  C-2 the  flight  path  angle 

t ime  history  shows  that   the  exact  integration  curve  displays  less  spiral  

mode  and  less  damping  than  the  linear  solution  and  further  shows  that  the 

exact  phugoid  oscillations  have  smaller  period. In fact   the   f i rs t   cycle  

takes 1 . 9 5  X lo3  secs   versus   the  l inear   phugoid  per iod of 2 .  51 X l o 3  secs .  

The  second  and  third  cycles  take  even  less  time  and  show  that  the  exact 

motion will  complete 3 cycles for  the  two  l inear  periods.  

A complete  numerical  analysis  shows  that  below 100, 000 ft o r  above 

400,  000 f t   l inear   solut ions  are   accurate .  In between  there  is a definite 

requirement for  the  inclusion of higher   order   a tmospheric   mass   densi ty  

gradients.  

NASA-Langley, 1969 - 30 CR-1449 


